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We present a method for modeling the distributions of multiple species simultane-

ously using Dirichlet process random effects to cluster species into guilds. Guilds

are ecological groups of species that behave or react similarly to some environmen-

tal conditions. By modeling latent guild structure, we capture the cross-correlations

in abundance or occurrence of species over surveys. In addition, ecological infor-

mation about the community structure is obtained as a by-product of the model.

By clustering species into similar functional groups, prediction uncertainty of com-

munity structure at additional sites is reduced over treating each species separately.

The proposed model also presents an improvement over previously proposed joint

species distribution models by reducing the number of parameters necessary to cap-

ture interspecies correlations and eliminating the need to have a priori information

on the number of groups or a distance metric over species traits. The method is illus-

trated with a small simulation demonstration, as well as an analysis of a mesopelagic

fish survey from the eastern Bering Sea near Alaska. The simulation data analysis

shows that guild membership can be extracted as the differences between groups

become larger and if guild differences are small, the model naturally collapses all

the species into a small number of guilds, which increases predictive efficiency by

reducing the number of parameters to that which is supported by the data.
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1 INTRODUCTION

In recent years, there has been considerable development

of methodology for modeling and predicting abundance and

occurrence of species of interest. Much of this development

uses a hierarchical framework for developing models to fit

the complexities of the observed data or natural abundance

processes (Cressie, Calder, Clark, Hoef, & Wikle, 2009;

Royle & Dorazio, 2008; Hobbs & Hooten, 2015). Some of

these complexities may include spatial and temporal depen-

dence (Carroll, Johnson, Dunk, & Zielinski, 2010; Latimer,

Banerjee, Sang, Mosher, & Silander, 2009; Johnson, Ream,

Towell, Williams, & Guerrero, 2013b; Thorson et al., (2015);

Ward et al., (2010); Thorson et al., 2016), nondetection of

individuals at sampled sites (Dorazio & Connor, 2014; Royle,

2004), and zero inflation (Johnson & Fritz, 2014; Thorson

et al., 2016). Many of these species distribution models

(SDMs) were used to make inference to a single species or

one-at-a-time modeling if community inference was desired.

However, by not recognizing the fact that species interact, use

of single-species models for making inference for commu-

nity abundance and structure can produce misleading results

(Clark, Gelfand, Woodall, & Zhu, 2014). Hence, new joint

species distribution models (JSDMs), which explicitly model

species interactions (or cross-correlation), have recently been

developed (e.g., Dorazio & Connor, 2014; Latimer et al.,

2009; Thorson et al., 2015, 2016). Herein, we propose a

novel JSDM approach, which models species interactions

through membership in a latent ecological guild (Simberloff

& Dayan, 1991) or functional group within the sampled range

of habitats.

Typically, description of an abundance model begins with

a generalized linear model (GLM) structure for the abun-

dance process using a discrete value distribution such as
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Poisson or negative binomial. For example, one might model

the abundance as a Poisson observation with log mean that

is a function of covariates. Those covariates might include

habitat variables or variables related to the sampling pro-

cedure, which are thought to be related to the observed

abundance. Alternatively, one might log transform the abun-

dance and use Gaussian linear models (Johnson et al., 2013b;

Johnson & Fritz, 2014; Ward et al., 2010), but the gen-

eral mean structure is usually the same. Herein, we will

focus on the GLM versions. The focus of the abundance

modeling is related to either establishing an ecological rela-

tionship between ( joint) abundance and the environmen-

tal covariates or predicting abundance at unsampled loca-

tions.

To extend the single-species GLM-oriented model to

account for interactions of multiple species and improve

prediction and inference of community structure and abun-

dance, there have been several approaches that differ in

the details of interaction modeling. Most were placed in

the GLM framework by adding random effects, which are

either directly correlated between species (Clark et al., 2014;

Dorazio & Connor, 2014; Latimer et al., 2009) or when

marginalized from the model (on the log scale) create a

cross-species correlation structure (Thorson et al., 2015,

2016). The direct approach of using a free parameter for

every pair of species when modeling the species-level cor-

relation has been successfully implemented (Clark et al.,

2014; Latimer et al., 2009); however, in those studies, there

were a high number of sampled sites or a low number of

species considered. In other studies, unstructured covari-

ance did not produce reliable results (Dorazio & Connor,

2014). Thus, recent efforts to contribute novel method-

ology for JSDMs have focused on reducing the number

of parameters used to model species interactions. Dorazio

and Connor (2014) used a known species trait proximity

matrix to model the species-level covariance matrix using

a spatial correlation function. By using the known infor-

mation on species similarity, there are only two parame-

ters necessary to model the cross-correlation. Another low

complexity approach has been proposed using linear com-

binations of latent random effects (Thorson et al., 2015,

2016). Specifically, the latent effects are spatial fields, but

the same methodology could be applied using independent

random effects. If the number of random effects is small

relative to the number of species modeled, the number of

parameters necessary for modeling species cross-correlation

can be significantly reduced from the unstructured sce-

nario.

As a novel alternative, we propose a fully Bayesian JSDM

that uses latent ecological guilds to model interactions among

species and obtain joint abundance inference. We also con-

sider joint species occurrence as well, where occurrence

is defined as the binary presence (i.e., abundance > 0) or

absence (abundance = 0) of a species. Dorazio and Connor

(2014) use known guild membership of different species to

model independence of some species in a cross-correlated

JSDM. Simberloff and Dayan (1991) defines an ecologi-

cal guild to be “a group of species that exploit the same

class of environmental resources in a similar way.” With

this definition in mind, we seek to build a model where

species are cross-correlated in abundance because there are

unknown group effects for some set of covariates, that is,

if the guild structure was known, they could be represented

by (guild × covariate) interaction terms in the GLM abun-

dance models. To accomplish this task, we format the model

as a latent class or mixture model (see McLachlan & Peel,

2004). Mixture models or latent class models are often used

to model dependance between variables in a nonparametric

fashion because for a sufficiently large number of groups,

marginalizing over the random latent classes can approxi-

mate any dependence structure to whatever degree desired

(McLachlan & Peel, 2004; Vermunt, Van Ginkel, Der Ark,

Andries, & Sijtsma, 2008). It has been shown that this holds

even when the conditional models are independent given

group membership (Dunson & Xing, 2009). In an ecological

abundance context, finite mixture models have been used in

the past to model spatial heterogeneity and correlation in a

nonparametric fashion (Dorazio et al., 2008; Johnson et al.,

2013b).

Dunstan, Foster, and Darnell (2011) and Dunstan, Foster,

Hui, and Warton (2013) have proposed a finite mixture of

GLMs approach (using the term “archetypes” as opposed to

guilds) for JSDM. We build on their work by extending the

finite mixture to an infinite mixture using a nonparametric

Dirichlet process (DP) mixture model to account for environ-

mental effects on guild abundance. By using the DP to model

guild response to the environment, the number of guilds is

a derived parameter in the model, which can be estimated.

Dunstan et al. (2011) use information criteria (Bayesian infor-

mation criterion [BIC]) to make inference to the number of

guilds (archetypes). In a fully Bayesian framework, the use

of BIC implies a uniform prior distribution for the number

of guilds and this has been shown to overestimate the num-

ber of groups (Casella, Moreno, & Girón, 2014). By using

an informative prior for the DP parameter, we can have con-

trol over the prior distribution of the number of guilds to

avoid overfitting and make more accurate inference for guild

membership.

In the following section, we propose a DP mixture model

JSDM (DP-JSDM). The DP-JSDM is motivated using the

Chinese restaurant process (CRP) for partitioning species

into guilds. The CRP provides a method to construct a DP

mixture model that, can, serve as a description of the DP

process. There are several choices for modeling guild parti-

tioning, but we utilize the DP/CRP due to its long history

and good clustering properties (Casella et al. 2014). Param-

eter estimation in the DP-JSDM is challenging due to the

latent guild process. We provide a reversible-jump Markov

chain Monte Carlo (RJMCMC; Green, 2003) algorithm for

making fully Bayesian inference, as opposed the maximum
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likelihood approach of Dunstan et al. (2011). Finally, we

apply the method to few simulated data sets, as well as a

real data set on mesopelagic fish communities in the eastern

Bering Sea, Alaska.

2 METHODS

2.1 General model framework

We begin the description of the proposed methods with

some notation. First, we assume that there are J surveys, for

which abundance (or count index; hereafter, we use the term

“counts”) of I different species is measured. Let nij be the

observed count for ith species in survey j. We also use the

vector notation ni = (ni1, … , niJ)′ and n = (n′
1
, … ,n′

I)
′.

For occurrence modeling, we denote occurrence as yij = 1 if

nij > 0 otherwise yij = 0. In practice, nij need not necessarily

be observed for occurrence modeling. The notations yi and y
are similar to the abundance counterparts.

2.1.1 A JSDM for known guild membership
For abundance modeling, there are several possible distribu-

tions that could be used to model the observed discrete counts,

Poisson, negative binomial, zero-inflated Poisson (ZIP), etc.,

so we will generically denote this observation model as

[nij|zij, 𝜸] where zij is a latent Gaussian variable control-

ling the level of expected abundance and 𝜸 is a vector of

parameters. The notation “[A|B]” refers to the conditional

probability distribution (density) function (PDF) of A given

B. For example, if a Poisson distribution is considered, where

E(nij) = ezij , then 𝜸 is not necessary. In the example analy-

sis of mesopelagic fish surveys, we utilize a ZIP model, so 𝜸

would represent the mixture probabilities for the extra zeros.

For occurrence modeling [ yij|zij, 𝜸] would be a Bernoulli

PDF. We use a probit link for computational ease, that is,

probability of occurrence is Φ−1(zij), where Φ is a standard

normal cumulative density function. Therefore, again, 𝜸 is

not necessary.

To account for unknown interspecies correlations, we take

a clustering approach inspired by the analysis of Johnson et al.

(2013b) for incorporating spatial structure when there are no

reasonable distance metrics or neighborhood groupings are

unknown. First, if the species are unrelated in their environ-

mental response, we might model the zi = (zi1, … , ziJ)′
vectors with the linear model

[zi|𝜹∗i , 𝜷, 𝜎] = N(X𝜷 + H𝜹∗i ,Σi), (1)

where

• X is a design matrix of covariates for which there are no

species-level effects,

• 𝜷 is a vector of regression coefficients (common to all

species),

• H is a J×q matrix of q habitat or environmental covariates

recorded at the jth survey.

• 𝜹∗i are species-specific response (in terms of abundance

or occurrence) coefficients to the environmental variables

measured in H, and

• Σi is a diagonal matrix with entries 𝜎2
ij (for occurrence

modeling 𝜎ij = 1).

Nonmixture JSDMs have proposed including species

interactions by modeling 𝜹∗i as random effects where

Cov(𝜹∗i , 𝜹
∗
i′ ) ≠ 0 to induce association between species abun-

dance. The mixture JSDMs of Dunstan et al. (2011) and

Dunstan et al. (2013), however, follow the view that if two

species respond to environmental conditions in a similar way

(i.e., belong to the same guild), then we would expect that

𝜹∗i ≈ 𝜹∗i′ . Thus, there are unique responses at the guild level,

not the species level. We can fold any species-specific effects,

which do not cluster into guilds into the X𝜷 term.

Mixture formulations of JSDMs are constructed by envi-

sioning an unknown partition, indexed by p, of the species

into 𝜅p guilds (or archetypes) such that species within groups

behave similarly with respect to the abundance process. That

is, 𝜹∗i = 𝜹pk for all species i belonging to guild k of partition

p. To reduce notational burden, we will also use “p” to refer

to the partition itself depending on the situation. For a given

p, the joint model can be written as

[z|p,Δp, 𝜷, 𝜎] = N(X𝜷 + KpΔp,Σ), (2)

where

• Kp = Cp ⊗ H, Cp is an I × 𝜅p binary matrix indicating

which species belong to each guild in p (⊗ is the Kronecker

product),

• Δp = (𝜹′p1, … , 𝜹′p𝜅p
)′ is a concatenated vector of unique

guild coefficient vectors, here, we will assume that they are

independent random effects such that [𝜹pk|Ω] = N(0,Ω),
for k = 1, … , 𝜅p, and

• Σ = blockDiag(Σi).

To reduce the complexity of the proposed model, we sug-

gest the following simplifications for general practice:

(i) setting 𝝈 = diag(Σ1∕2) = exp{L𝜽}, where L is a matrix

of design covariates and

(ii) setting Ω = 𝜔2(H′H)−1, where 𝜔 = exp(𝜉).
With respect to (i), there are some useful special cases,

namely, L = 1 gives 𝜎ij = 𝜎 and L = II ⊗ 1J gives

𝜎ij = 𝜎i. However, the overdispersion parameters could also

be modeled based on covariates associated with sampling

methods, etc. Suggestion (ii) was formulated from the covari-

ances of the g-prior (Tiao & Zellner, 1964). The g-prior,

N(0, 𝜔2(H′H)−1), is an often used prior for regression coef-

ficient parameters. It has the nice benefit that, with a single

parameter, it automatically controls the scale of variance

and covariance for each coefficient based on the scale of

the covariates and their cross-correlation. The exponential
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reparameterization is used for ease of inference because 𝜉 can

be unconstrained as opposed to 𝜔.

2.1.2 Partitioning species into guilds
The previous description assumed that the correct partitioning

of the species is known; however, for most real data sets, the

correct partition is unknown. Thus, we must also provide a

probability model for the number and membership of guilds.

A commonly used distribution over partitions is the CRP. A

construction definition of the CRP is described as follows, for

a given parameter 𝛼 > 0:

1. A customer enters the restaurant and sits at one of an

infinite number of tables.

2. The next customer enters and chooses to sit next to the

previous customer with probability 1∕(1+𝛼) or a new table

with probability 𝛼∕(1 + 𝛼).
3. In general, the i + 1 customer chooses to sit by (link with)

one of the previous customers, each with probability ∝ 1,

or by themselves with probability ∝ 𝛼.

4. Groups are constructed by collecting the cliques of the

mathematical graph formed by the links between cus-

tomers. That is, groups are defined by all customers that

are linked, possibly through other customers.

This formulation of the CRP may be slightly different than

the traditional description. Namely, it is usually described by

the ith customer choosing to sit at an occupied table with prob-

ability proportional to the number of occupants or a new table

with probability proportional to 𝛼. Blei and Frazier (2011)

have shown that these two definitions are equivalent, but com-

putations used for inference can be more efficient under this

formulation. The “individual links” version was also used by

Johnson et al. (2013b) for clustering spatial abundance trends.

The density function for the CRP cluster model is given by

[ p|𝛼] = CRP(𝛼) ∝ Γ(𝛼)
Γ(𝛼 + I)

𝛼𝜅p

𝜅p∏
k=1

(gpk − 1)!, (3)

where gpk is the size of the kth group in partition p. Note that

the PDF of partition p is only a function of the number and

sizes of the groups. Partitions with the same number of groups

and group sizes have the same probability regardless of which

individuals fall in each cluster.

2.1.3 An infinite mixture model
Given that we have added a CRP partition model where

the number of guilds is not fixed and known, we should

investigate what implications this has for the marginal

species-specific effects, 𝜹∗i =
∑

p
∑

kCpik𝜹pk[ p|𝛼], where Cpik
is the (i, k) entry of the Cp matrix, that is, an indicator that

species i belongs to guild k. Using the well-known relation-

ship between the CRP and the DP (Sethuraman, 1994), we

can write the z portion of the model as the DP mixture model,

[zi|𝜹∗i , 𝜷, 𝜎] = N(X𝜷 + H𝜹∗i ,Σi),

[𝜹∗i |G] = G =
∞∑

k=1

𝜋kI(𝜹∗i = 𝜹k),

G ∼ DP(𝛼,G0); G0 = N(0,Ω),

(4)

where DP(𝛼,G0) represents a DP with parameter 𝛼 (same

as the CRP) and base distribution, G0, which in this case is

N(0,Ω). Drawing a realization of the random PDF, G, from

DP(𝛼,G0) is accomplished by selecting the random sequence

of probabilities, 𝜋k by drawing 𝜈k ∼ beta(1, 𝛼) and setting

𝜋k = 𝜈k
∏k−1

k ′=1(1 − 𝜈k ′ ), then drawing 𝜹k ∼ G0 = N(0,Ω).
As it happens, selecting guilds via the CRP is equivalent

to assigning groups according to the probability distribution

{𝜋k}∞k=1
for each of the I species (Sethuraman, 1994). So, the

species-specific effects, 𝜹∗i , arise from the infinite mixture

distribution in Equation 4.

Using the infinite mixture representation in Equation 4, we

can make some comparisons to the previous mixture mod-

els of Dunstan et al. (2011). In the Dunstan et al. (2011)

framework, the number of guilds is a known component of

the model, then model selection is performed using BIC to

select the appropriate number of guilds. This is equivalent

to specifying a flat prior distribution over the number guilds

(Casella et al. 2014). This procedure has been known to posi-

tively bias the estimated number of groups in a mixture model,

that is, BIC tends to select a model with too many groups

(Casella et al. 2014). From the infinite mixture perspective,

𝜅p can be thought of as a derived quantity that is the ran-

dom number of unique guilds obtained from I draws from

the distribution {𝜋k}∞k=1
. Using a prior distribution for 𝛼, the

implied distribution on the number of guilds can be adjusted

as desired. In the following sections, we demonstrate selecting

a gamma prior for 𝛼 such that, approximately, [𝜅p] ∝ 1∕𝜅p.

2.1.4 Species effects cross-correlation structure
Like the spatial covariance model use by Dorazio and

Connor (2014), the DP-JSDM also marginally possesses gen-

erally positive cross-covariance structure. This makes intu-

itive sense as one is grouping similar species together or,

if species are dissimilar, allowing them to be independent.

The covariance structure of the DP-JSDM can be derived by

forming an intercept random effect, 𝜼 = KpΔp, such that

z = X𝜷 + 𝜼 + 𝝐, where [𝝐] = N(0,Σ). Then, conditioning on

the cluster assignment, the covariance matrix of the random

effect 𝜼 is

Var(𝜼|p) = CpC′
p ⊗HΩH′, (5)

and the marginal variance is given by the mixture,

Var(𝜼) =

{∑
p

CpC′
p[ p|𝛼]}⊗HΩH′ = Ψ⊗HΩH′, (6)

where Ψ is a matrix with (i, i′) entries equal to the probabili-

ties that species i shares a guild with species i′. We term the Ψ
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matrix to be the species proximity matrix due to the fact that

it forms a distance, of sorts, in the guild space of the species.

Although the covariance is never negative between any two

species, it can be zero; thus, those species that occupy differ-

ent guilds will have uncorrelated 𝜂 random effects, that is, if

𝜓ii′ ≈ 0, then Cov(𝜂ij, 𝜂i′j) ≈ 0.

It should be noted, however, that although the covariance

of the 𝜼 random effect is generally positive, that does not

mean that there are only “positive” (or zero) relationships

between species. The clustering is based on the relationship

each species has with the chosen covariates. For example,

one species may react positively along a covariate gradient

(𝛿i > 0) and another reacts negatively along that same gra-

dient (𝛿i′ < 0); therefore, if a new site has a high level of

this covariate, the first species will be predicted to be rel-

atively abundant, whereas the other species abundance will

be lower.

2.2 Bayesian inference

Because of the hierarchical and variable dimensional nature

of the parameter space of the DP-JSDM model, we employ

a Bayesian approach via MCMC for model fitting and infer-

ence. The posterior distribution of interest is given by[
z, p,Δp, 𝜷, 𝜔,𝝈|n] ∝ [n|z] [z|𝜷,Δp,𝝈

]
×
[
Δp|𝜔, p] [p|𝛼] [𝜔] [𝝈] [𝜷] [𝛼] , (7)

where [𝜔], [𝝈], [𝜷], and [𝛼] are the prior distributions for the

parameters.

2.2.1 An RJMCMC algorithm
The most direct way to make inferences on the proposed hier-

archical clustering model is through an RJMCMC algorithm

(Green, 2003) to sample the posterior distribution of the

parameters, number of guilds, and guild assignment. Here, we

provide an overview of the RJMCMC, additional details of

the sampler are given in Supplementary Material A.

In our description, we will assume the following prior

distributions for the parameters:

[𝜷] = N
(
𝝁𝜷 ,Σ𝜷

)
,
[
Δp|𝜔, p] = N

(
0, I𝜅p ⊗𝜔2Q

)
,

[𝜔] = HT(𝜙𝜔, d𝜔), [𝜎] = HT(𝜙𝜎, d𝜎)
[ p|𝛼] = CRP(𝛼), and [𝛼] = gamma(a, b),

where I𝜅p is an identity matrix of size 𝜅p, Q is a known

positive-definite matrix, and HT(𝜙, d) represents a scaled

half-t (t density truncated to [0,∞)) PDF with scale parame-

ter 𝜙 and d degrees of freedom. For most of these parameters,

the priors can be adjusted to whatever distribution the user

would like, the trade-off being a Metropolis-Hastings (MH)

update instead of a Gibbs step (e.g., for 𝜷) or no difference at

all if the parameter has to be updated with an MH step to begin

with (𝜔, 𝜎, and 𝛼). However, the normal [Δp|𝜔, p] prior is nec-

essary to the proposed RJMCMC algorithm. Although, the

known Q is not necessary. This is not as critical as it sounds as

the marginal distribution is still a nonparametric DP process;

we just require that the base distribution be a multivariate

normal.

The majority of the proposed RJMCMC algorithm is a

standard Metropolis-within-Gibbs sampler for a GLM-like

model. Conditioned on a realization of p, all the other param-

eters can be updated with a traditional MH step or a Gibbs

step. Hence, we do not focus on their updates here (see

Supplementary Material A). However, to update p, the dimen-

sion of the Δp vector will potentially change, necessitat-

ing the transdimensional aspect of the RJMCMC. Naively,

the transdimensional moves require a joint ( p,Δp) proposal,

which can be rejected often if one of those quantities is

a bad fit for the current state of the remaining parameters

even though the other is acceptable. Second, proposing new

p such that the MCMC chain will mix well over the space

of partitions is itself challenging. Because we are assum-

ing that [z|𝜷,Δp,𝝈] and [Δp|𝜔, p] are multivariate normal,

the first problem can be handled with the partial analytic

RJMCMC method proposed by Godsill (2001) and utilized

by Johnson and Hoeting (2011) and Johnson et al. (2013b)

in similar transdimensional MCMC applications. The partial

analytic method allows proposal of a new model ( p in this

case) without jointly proposing the associated model-specific

parameters (Δp) because they can be analytically marginal-

ized. This is a special case of a collapsed Gibbs sampler

(Van Dyk & Park, 2008).

To update p, we denote 𝓁i ∈ {1, … , i}, to be the link

between the ith customer and the person with which they

choose to sit. If 𝓁i = i, then the customer has chosen to sit by

themselves (i.e., at a new table). Now, p is updated by sequen-

tial sampling of all 𝓁i. The reason that an MCMC based on

the links version of the CRP moves through partition space

faster is that changing one 𝓁i might split a group apart or join

two groups together. This provides a bigger jump in partition

space than simply moving one individual to another group

as ids the case with the traditional CRP MCMC (e.g., Neal,

1991). The marginal PDF used to sample each 𝓁i in the partial

analytic RJMCMC is

[𝓁i|z, 𝜷,𝝈, 𝜔, 𝛼] = ∫ [z|𝜷,Δp,𝝈][Δp|𝜔, p][𝓁i|𝛼] dΔp

= [z|𝜷,𝝈, 𝜔, p][𝓁i|𝛼],
(8)

where [𝓁i|𝛼] ∝ 𝛼I(𝓁i = i) + I(𝓁i < i). We found the direct

method for calculating [𝓁i|z, 𝜷,𝝈, 𝜔, 𝛼] used by Johnson and

Hoeting (2011) and Johnson et al. (2013b) too computation-

ally intensive, so we used an alternative formulation based on

the Laplace approximation (see Supplementary Material A)

for Equation 8, which in this case is exact because the inte-

grand is proportional to a normal PDF for Δp (Goutis &

Casella, 1999).
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2.2.2 Derived parameters
There are several derived parameters that may be of interest

for making desired ecological inference. First are predictions

of community abundance at new locations or times. Second,

one may be interested in the overall effect of the environmen-

tal covariates for a particular species, that is, 𝜹∗i . Finally, the

associations between species may be of interest, so an esti-

mate of theΨmatrix would be desired. All of these desires are

easily fulfilled because we are drawing a sample of the base

parameters via an RJMCMC algorithm; therefore, all that is

necessary is to calculate these derived parameters within the

RJMCMC.

First, abundance can be predicted at additional sites (or

times) by drawing za ∼ N(Xa𝜷 + HaΔp,Σ), where the “a”

superscript denotes additional environmental conditions, site,

etc. So, the design matrices Xa and Ha are populated with

covariate values for the additional conditions. Then draw na ∼
[na|za, 𝜸]. After each update of p, we can calculate Cp based

on the links between individuals. Then 𝜅p is just the number

columns of Cp and one can monitor that quantity to obtain

a sample from the posterior distribution of the number of

guilds. The species-specific environmental effects can be cal-

culated at each iteration as 𝜹∗i =
∑𝜅p

k=1
Cpik𝜹k. The posterior

sample mean of CpCp′ provides an estimate of of the guild

proximity matrix Ψ.

3 A SIMULATION PROOF-OF-CONCEPT

To examine the ability of the DP-JSDM model to make infer-

ence to species interaction, as well as to make community

abundance predictions, we tested the model and RJMCMC

sampler with a small group of simulated data sets. In analyz-

ing the simulated data, our objective was to assess whether

the DP-JDSM model would, in practice, produce generally

correct estimates of the guild structure. Second, would the

DP-JSDM exhibit the expected behavior that as 𝜔 becomes

small, the number of guilds (groups) estimated will go to one

as the functional differences between the guilds (with respect

to the variables in H) becomes insignificant.

3.1 Simulation and analysis

Data were simulated for I = 20 species, J = 35 samples,

and 𝜅p = 5 groups. Six data sets were simulated correspond-

ing to 𝜔 equal to 0.25, 0.5, 0.75, 1, 1.5, and 2. Although the

true number of groups is always technically equal to 5, the

practical differences between the groups tends to zero as 𝜔

becomes smaller. The group sizes were gpk = 7, 5, 4, 3, and

1. Three environmental variables composing the guild design

matrix H were generated from a standard normal distribution.

In addition, a single survey effort variable, x, was generated

to adjust overall abundance. The global design matrix was set

to X = [1, x,Hx], where Hx = [H′| … |H′]′, that is, H matrix

is concatenated I times over species. Thus, Δp denotes guild

differences from the overall global effect of the environmental

variables, H. In order to maintain identifiability, we imposed

the constraint that
∑𝜅p

k=1
𝜹k = 0. The global coefficient was

set to 𝜷 = (2, 1, 0,−1, 0.5)′ , and each 𝜹k; k = 1, … , 5, was

drawn from N(0, 𝜔2H′H). In these simulations, all 𝜎ij = 0;

therefore, z ≡ X𝜷 + KpΔp. However, a common 𝜎 was esti-

mated in each analysis using a Poisson observation model,

that is, [nij|zij] = Poisson(ezij ).

The prior distributions used were the same as specified in

subsection 2.2, specifically,

• [𝜷]: 𝝁𝜷 = (μ̂0, 0, 0, 0)′, and μ̂0 is the log of the mean

observed count and Σ𝜷 = 100(X′X)−1.

• [𝜔]: 𝜙𝜔 = 1, and d𝜔 = 1, which implies a half-Cauchy

prior distribution.

• [𝜎]: 𝜙𝜎 = 1, and d𝜎 → ∞, which implies a half-normal

prior distribution.

• [𝛼]: a = 0.258, and b = 0.038.

The prior distribution parameters for the gamma PDF [𝛼]
were chosen based upon the method of Dorazio (2009) with

one alteration. Dorazio (2009) used the method to choose

a and b such that the prior distribution over the number

of groups was approximately uniform, that is, [𝜅p] ≈ 1∕I,
𝜅p = 1, … , I. However, we agree with the philosophy of

Casella et al. (2014) that a priori, we should prefer fewer

groups; therefore, using the same optimization approach as

Dorazio (2009), we chose a and b such that, approximately,

[𝜅p] ∝ 1∕𝜅p. So, all else being equal, a smaller number of

groups is a priori preferred.

For each of the six simulated data sets, we sampled the pos-

terior distribution (Equation 7) using the RJMCMC algorithm

detailed in Supplementary Material A. Each sample consisted

of 50,000 iterations following a burn-in of 10,000 iterations.

Convergence of the MCMC was informally assessed through

repeated runs from different starting values with group size

ranging from one to 10. All of the runs produced very similar

results (accounting for Monte Carlo error) so, we felt confi-

dent that run length was sufficient. Code to run the RJMCMC

for the DP-JSDM can be found in the multAbund1 pack-

age for the R statistical environment (R Development Core

Team, 2015), which contains the code to run the RJMCMC

algorithm described in Supplementary Material A.

3.2 Simulation results

As expected, when 𝜔 became small, the DP-JSDM model

was not able to distinguish guild differences between the

species and essentially estimated one single group (Figure 1;

𝜔 = 0.25).

1Available from github at: https://github.com/dsjohnson/multAbund. The

package can be installed from within an R session using thedevtools pack-

age, but users need to be able to compile source code on their platform as the

multAbund package uses C++ code in its routines.

https://github.com/dsjohnson/multAbund
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FIGURE 1 Estimated probabilities of joint guild membership between each species. For each panel, the value of 𝜔 used to simulated the data is provided in

the bar above the plot

FIGURE 2 Estimated number of guilds, 𝜅p, for simulated Poisson data sets with 𝜔 ranging from 0.25 to 2. For each panel, the value of 𝜔 used to simulate

the data is provided in the bar above the plot

As 𝜔 increased and guild differences became apparent, the

model was able to separate the species into their respective

guilds reasonably well (Figure 1). In addition, as 𝜔 became

large, the precision with which the number of guilds was

estimated increased as well (Figure 2).

There may be some bias as a few of the simulation runs

produced 𝜅̂p = 6 (Figure 2; 𝜔 = 1 and 2); however,

a full simulation experiment would be necessary to assess

that fact. Even though we strived to create an efficient

RJMCMC algorithm, it is still somewhat computationally

intensive.

4 EXAMPLE: MESOPELAGIC FISH
ABUNDANCE

4.1 Data

In our next demonstration of the DP-JSDM, we analyze

community structure and abundance of fishes that migrate

diurnally between three mesopelagic depths in the east-

ern Bering Sea near Alaska. Foster, Dunstan, Althaus, and

Williams (2015) provide a similar analysis of fisheries trawl

data from Australia using the finite-mixture MLE approach of

Dunstan et al. (2011). In the Bering Sea, the tendency for
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FIGURE 3 Locations of the mesopelagic trawl surveys. There were J = 41

separate trawl surveys used in the analysis of Section 4; however, some

surveys were attempted geographically near other surveys, so they are

somewhat obscured in the figure

most mesopelagic species to vertically migrate makes them

an important trophic link between the deep scattering layer

and upper surface waters (Sinclair, Walker, & Thomason,

2015), yet fundamental aspects of multispecies distributions

and relative abundances have not been previously described.

The field effort identified highly productive areas of the

eastern Bering Sea pelagic (Figure 3) for trawl sampling.

In the summers of 1999 and 2000, 29 daytime and 16 night-

time trawls were conducted at three depths (250, 500, and

1,000 m) during a narrow sampling period. Four of these

trawls were not analyzed due to technical difficulties in the

field, and we discarded them, resulting in J = 41 samples.

Trawls were run at depth for 15–90 min resulting in collec-

tions of over 50,000 individuals representing 55 species of

fish and squid. Essentially, each individual trawl sample rep-

resents a community as influenced by depth and time of day.

Here, we will demonstrate the DP-JSDM using I = 20 of the

relatively most common fish species (as opposed to squids,

etc.). Many of the species were extremely rare in the survey

effort (i.e., one individual observed over the entire study) and

were removed. As opposed to many fisheries trawl surveys, all

individuals caught in the trawl were classified to the species

level. There was no subsampling of the individuals caught in

the trawl.

The variables we put in the H design matrix reflect

the belief that the species segregate into guilds based on

diurnal vertical migration characteristics. So the guild covari-

ates recorded for each trawl are daylight cycle (day or night)

and depth category (250, 500, or 1,000 m). Here, we used the

full interaction model to define the H design matrix (i.e., ‘∼
cycle*depth’ in R language model syntax). Because the

duration of the trawl varied from survey to survey, the duration

was included in the X matrix to model the overall abundance

of fish caught in the trawl.

4.2 Model and analysis

Initial attempts at fitting a DP-JSDM proceeded in the same

manner as the analysis of the simulation data in the previ-

ous section. Namely, we used the same Poisson model for the

observed abundance counts. However, after initial fittings, it

became evident that the trawl data set possessed a significant

level of zero inflation relative to the Poisson distribution. This

is likely due to the spatial patchiness of pelagic fish occur-

rence distributions (Benoit-Bird & Au, 2003). In addition,

there may also be detection issues in the survey such that a

zero count in the trawl does not necessarily mean absence of

the species. However, unlike Dorazio and Connor (2014), we

do not have replicated surveys at the same site and time in

which to separate detection and absence. Therefore, we uti-

lized a ZIP model in place of a Poisson GLM. The ZIP model

used for this analysis is

[nij|zij, 𝛾i] = 𝛾iI(nij = 0) + (1 − 𝛾i)Poisson(nij|ezij ), (9)

where 𝛾 i is a species-specific zero inflation mixture that mod-

els the probability that a species is not present or not caught

in the trawl if it is present. We used a t prior distribution on

logit 𝛾 i,

[logit𝛾i] = T(𝜙𝛾, d𝛾 ), (10)

with scale parameter𝜙𝛾 = 1.5 and degrees of freedom d𝛾 = 6.

This t distributed prior implies a prior distribution for 𝛾 i that is

approximately uniform over (0,1). For the remaining param-

eters, we used the same prior specification as the simulated

data analysis of subsection 3.1.

To assess if there is any improvement gained by using the

DP-JSDM, we also fitted the “independent species” JSDM,

that is, 𝜅p = I, to the data. This independent JSDM did

not truly treat each species independently because there are

shared terms in the X design matrix (i.e., trawl duration),

but it allows us to assess improvement in classifying animals

into functional guilds relative to cycle and depth over treating

them separately. To ascertain the magnitude of improvement,

we would have liked to be able to use the “leave one out”

Bayesian predictive information criterion (BPIC) given by

−2 BPIC = −2
∑

i,j
E{log[nij|n−(i, j), z−(ij),𝜸,𝜷,Δp, p,𝝈, 𝜔,𝛼]}

= −2
∑

i,j
E{log[nij|n−(i, j), z−(ij), 𝜸]},

(11)
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where n−(i, j) is a vector of all observed data except nij and

log[nij|n−(i, j), 𝜸, 𝜷,Δp, p,𝝈, 𝜔, 𝛼] is the log posterior predic-

tive density for the (i, j)th observation. However, it would be

computationally infeasible to rerun the RJMCMC for every

left out (i, j) entry. So we used the widely applicable informa-

tion criterion (WAIC; Watanabe, 2013) as an approximation

(Watanabe, 2010; Link & Sauer, 2016) to −2 BPIC, where

WAIC = −2
∑

i,j
E{log[nij|n, z, 𝜸]}

+ 2
∑

i,j
Var{log[nij|n, z, 𝜸]}. (12)

The WAIC requires only one run of the RJMCMC with the

full data set. There are also other selection methods appli-

cable, (Hooten & Hobbs, 2015); however, we found WAIC

straightforward to implement for the DP-JSDM.

The model was fitted using the R package multAbund.

The RJMCMC algorithm was run for 100,000 iterations fol-

lowing a burn-in of 10,000 iterations. Several trial runs at

different starting values resulted in similar posterior distri-

butions, so we felt that this run length was sufficient for

posterior inference. The package contains code to fit the Pois-

son abundance data model as well as the ZIP and Bernoulli

probit model for occurrence. In addition to the joint analysis

of abundance, we also analyzed the trawl survey data as an

occurrence data set where yij = 1 if nij > 0, else yij = 0. The

occurrence analysis results are presented in Supplementary

Material C.

4.3 Results

After fitting the ZIP version of the DP-JSDM and the inde-

pendent species JSDM, we noted there was a substantial

improvement in WAIC under the DP-JSDM. WAIC for the

DP-JSDM model was 3,052.071 and WAIC = 3,078.992 for

the independence model. The posterior mode of the number

FIGURE 5 Clustering of trawl survey fish species based on the estimated

probability of joint guild membership. The matrix 1 − Ψ̂ was used as a

distance matrix for forming the dendogram. The colored labels reflect guild

groupings based on the posterior mode number of guilds, 𝜅̂p = 8

FIGURE 4 Estimated probability of joint guild membership (proximity), Ψ, for 20 of the fish species in the trawl survey with respect to abundance
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of guilds was 𝜅̂p = 8 with 95% of the posterior probability

mass falling on 𝜅p = 8 or nine guilds. Figure 4 depicts the

estimated posterior matrix, Ψ̂ = E[CpC′
p|n], which defines

the probability that any two species share the same vertical

migration guild.

Using 1 − Ψ̂ as a measure of distance between species,

we plotted the species according to the associated dendogram

(Figure 5), which gives a better visualization of the groupings.

The predicted abundance for each species was calculated

as n̂∗ = E[n∗|n] where n∗ = (n∗
1
, … , n∗

I )
′ is an observation

under the various environmental conditions (Figure 6).

Results for the 𝜸 parameters are presented in Table B.1

of Supplementary Material B along with estimates of the 𝜹∗i

values (Figure B.1). Supplementary Material C provides sim-

ilar figures and results for the DP-JSDM model using binary

occurrence data instead of the observed abundance.

The model profiled a wide range in behavior among species

from the two dominant mesopelagic fish families in the

Bering Sea, Myctophidae and Bathylagidae. All but one of

the eight guilds described by the model (Figures 5 and C.2)

include a single species from one or both of these fami-

lies, implying that they partition the water column based

on a characteristic response to physical factors and foraging

requirements.

The accuracy and predictive capability of the model were

confirmed by the correct guild assignment of individual

FIGURE 6 Species-specific predictions of log abundance for each level of cycle (day or night) and depth (250, 500, or 1,000 m)
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species with previously known abundance and depth distribu-

tion profiles in the Bering Sea (e.g., bathylagids, Leuroglossus
schmidti and Lipolagus ochotensis). Then by virtue of guild

membership, the model described distribution patterns of

species for which there is little reported data (e.g., myc-

tophids, Stenobrachias leucopsarus and Diaphus theta). For

instance, L. schmidti and S. leucopsarus formed the tight-

est cluster in both abundance and occurrence dendograms

(Figures 5 and C.2). Each is the most abundant species within

their respective families in the Bering Sea (Brodeur, Wilson,

Walters, & Melnikov, 1999; Sinclair, Balanov, Kubodera,

Radchenko, & Fedorets, 1999), and both were highly rep-

resented throughout the water column day and night in

this study. Guild membership with L. schmidti suggests that

S. leucopsarus shares a similar life history and foraging

strategy wherein juveniles and adults have indistinct vertical

migration and are stratified in the water column according to

age (size) with adults remaining below 240 m (Beamish et al.,

1999; Mecklenburg, Mecklenburg, & Thorsteinson, 2002).

The bathylagid L. ochotensis and myctophid D. theta
also form a guild in abundance (Figure 5) along with

Stenobrachias nannochir in occurrence guilds (Figure C.2).

L. ochotensis and S. nannochir are among the most abun-

dant mesopelagic species in the Bering Sea (Sinclair et al.,

1999; Mecklenburg et al., 2002). Both are size stratified by

depth with adults residing in the deepest layers and espe-

cially present between 500 and 1,000 m (Mecklenburg et al.

2002). As a strong vertical migrator, L. ochotensis is also

abundant between 200 and 500 m (Sinclair et al., 1999;

Mecklenburg et al., 2002). Little is known about D. theta from

directed catch in the Bering Sea; however, guild identity with

S. nannochir and especially with L. ochotensis suggests that

they share similar patterns of behavior. The model implication

that D. theta is an age stratified strong vertical migrator avail-

able at upper mesopelagic depths (Figure 6, B.1, and C.3)

is supported by observations that it is a primary prey item

of Dall’s porpoise ( Phocoenoides dalli) in the top 250 m of

water column (Crawford, 1981).

The best example of the degree of fine detail captured

by the model was demonstrated by Bathylagus pacificus, a

common and abundant species of Bathylagidae that formed

its own cluster (Figure 5). Like other members of its fam-

ily, B. pacificus demonstrates a bimodal pattern in body size

at depth (Peden, Ostermann, & Pozar, 1985; Mecklenburg

et al., 2002). In our study, juvenile fish were concentrated

at midlayer levels during the day (500 m) rising to 250 m

at night, whereas adults concentrate at deeper daytime layers

(1,000 m) rising to 500 m at night (Sinclair & Stabeno, 2002).

This vertical migratory movement is apparent in the log abun-

dance plots (Figure 6; and 𝜹∗i values in Figure B.1) that

together with known age distribution suggest B. pacificus may

form its own guild based on abundances at depth driven by

varying foraging requirements of juvenile and adults.

For some depth and cycle combinations, there are some

guilds for which 𝜹k values contain more variation that others,

for example, the guild containing Macropinna microstoma
contained more variability than others for the (night, 500 m)

samples. This is due to the fact that these species are less abun-

dant at those depths and times. This is also reflected in higher

uncertainty in their 𝛾 i estimates as well (Table B.1)

5 DISCUSSION

We present a new methodology for modeling joint species

distributions based on DP mixture random effects to model

species associations through a latent guild structure. Instead

of trying to directly parameterize cross-correlation in a

species-specific random effect, we used latent membership in

an ecological guild. Species belonging to the same guild fol-

lowed the same response to environmental conditions through

random coefficient effects in a GLM-like setting. Unlike sim-

ple cross-correlated species random intercepts, the DP-JSDM

provides some valuable information on which species belong

to guilds together and for the species within a guild, how they

respond to the selected environmental conditions together.

A fundamental aspect of mesopelagic ecology in the Bering

Sea is diel vertical migration. The DP-JSDM successfully

identified community structure among 20 species of fish from

the eastern Bering Sea within this framework. The selected

model parameters of depth and light describe real-time clus-

ters of species that move together similarly through the water

column on a 24-hr cycle, presumably in relation to foraging.

Based on studies conducted in the North Pacific Ocean, the

diets of many of these same species collected from different

depths match vertical distribution patterns of the variety of

copepods and euphausiids that they consume (Beamish et al.

1999).

Although the DP-JSDM model was initially designed to

model species association, it has the added benefit that it

automatically adjusts to the necessary complexity because the

number of guilds is also simultaneously being estimated as

well. In the simulation experiment, it was demonstrated that if

there is little difference between the species in their response

to the recorded environmental conditions, the DP-JSDM will

collapse to one guild, that is, no statistical difference between

the species. This reduction in model complexity was noted

by Johnson et al. (2013b) in reference to spatially clustering

abundance trends. Here, we used only one model for guild

membership, the CRP; however, as Casella et al. (2014) noted,

there are other models for random set partitions. The CRP

and similar models have rather straightforward requirements

that each individual belongs to only one group and relation-

ships are symmetric, that is, if individual i is linked with i′,
then i′ is linked with i. However, there are models where

group membership can be more complicated, mixed member-

ship block models (MMBM; Airoldi, Blei, Fienberg, & Xing,

2008; Mohamed, Heller, & Ghahramani, 2014). MMBM have

the ability to model asymmetric relationships and member-

ship in multiple groups. Application of MMBM to JSDM is
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an area of future research that may help model more complex

ecological patterns with respect to species associations.

In our description of the model and our examples, we have

provided a relatively straightforward demonstration of the

model and associated RJMCMC algorithm. However, there

are several extensions that would be useful in other ecological

settings. Here, we did not have repeated observations at each

site, so we could not add an identifiable detection model to

the observation process, although we illustrated that covari-

ates (i.e., trawl duration) could be added as a quasi-detection

model (Ver Hoef & Frost, 2003). However, if multiple obser-

vations are available for each site, then a detection process

could be added to the observation model. Dorazio and Connor

(2014) made use of an N-mixture model, and the DP-JSDM

could use that as well. Instead of the ZIP model, one could

add a another observation model,

[ñijk, nij|...] = Binomial(ñijk|nij, 𝛾ijk)Poisson(nij|zij), (13)

as the observation portion of the model, where ñij is the

observed abundance of species i at site j during survey k
and 𝛾 ijk is the probability of each of the nij individuals being

observed. If one marginalizes over the true abundances, the

Poisson observation model results

[ñijk|𝛾ijk, zij] = Poisson(ñijk|log𝛾ijk + zij), (14)

where E[nijk] = exp{log𝛾ijk + zij}. The same approach

could also be used for occurrence modeling, in which case,

it becomes occupancy modeling, that is, for the observed

presence ỹijk, we use the hierarchical observation model,

[ ỹijk, yij|...] = Bernoulli( ỹijk|yij𝛾ijk)Bernoulli( yij|zij), (15)

where the probability that ỹijk = 1 is yij𝛾 ijk. The main point

being that the process model does not change in either of these

two settings, so the DP-JSDM can easily be adapted to these

situations.

There is also an alteration that can be made when many

sites are visited and spatial correlation between sites might

also be a consideration. We are not calling this an exten-

sion, because spatial correlation can be added without making

additions to the basic structure presented. All that needs to be

changed to add random spatial effects is to use the basis func-

tion approach of Ver Hoef and Jansen (2014), Johnson, Conn,

Hooten, Ray, and Pond (2013a), or Hefley et al. (2016). In a

spatial basis function model, the random spatial field is mod-

eled as 𝜼 = H𝜹where the columns of the matrix H contain the

spatial basis functions evaluated at each of the modeled sites

(rows). Each basis column represents a different frequency.

In the notation just presented, it should be fairly obvious how

the DP-JSDM can be changed to contain spatial correlation,

one simply needs to use a basis function matrix for the envi-

ronmental design matrix. In that case, it might be appropriate

to use [𝜹|𝜔] = N(0, 𝜔2I) for the DP baseline distribution

to match prior specifications that are usually used in spatial

analysis. And, of course, one could combine the spatial model

with the previously mentioned detection model extensions to

form mutivariate spatial models for occupancy and abundance

modeling.
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